Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Synth Biol (Oxf) ; 8(1): ysad006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073284

RESUMO

Synthetic biologists have made great progress over the past decade in developing methods for modular assembly of genetic sequences and in engineering biological systems with a wide variety of functions in various contexts and organisms. However, current paradigms in the field entangle sequence and functionality in a manner that makes abstraction difficult, reduces engineering flexibility and impairs predictability and design reuse. Functional Synthetic Biology aims to overcome these impediments by focusing the design of biological systems on function, rather than on sequence. This reorientation will decouple the engineering of biological devices from the specifics of how those devices are put to use, requiring both conceptual and organizational change, as well as supporting software tooling. Realizing this vision of Functional Synthetic Biology will allow more flexibility in how devices are used, more opportunity for reuse of devices and data, improvements in predictability and reductions in technical risk and cost.

2.
J Biomed Mater Res B Appl Biomater ; 109(2): 193-200, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32748573

RESUMO

A biocompatible and biodegradable scaffold with load-bearing ability is required to enhance the repair of bone defects by facilitating the attachment, and proliferation of cells, and vascularization during new bone formation. However, it is challenging to maintain the porosity and biodegradability, as well as mechanical properties (especially compressive strength), at the same time. Therefore, in the present work, a biodegradable composite structure of poly(caprolactone) (PCL) was designed using compression molding with varying amounts of poly(glycolic acid) (PGA) (25, 50, 75 wt%) and fixed amount (20 wt%) of beta tricalcium phosphate (beta TCP). It was hypothesized that the fabricated composite structure will develop porosity during the degradation of the PGA and that the corresponding decrease in mechanical properties will be compensated by new bone formation and ingrowth, in vivo. Accordingly, we have systematically studied the effects of sample composition on time-dependent dissolution and mechanical properties of the PGA/beta TCP scaffolds. The compressive strength increased up to ~92 MPa at 50% compression of the designed PCL-PGA samples. Furthermore, the dissolution rate, as well as weight loss, was observed to increase with an increase in the PGA amount in PCL. Based on the mechanical properties and dissolution data, it is concluded that the PCL-PGA scaffolds with beta TCP can be suitable candidates for bone tissue engineering applications, specifically for the reconstruction of bone defects, where strength and biodegradation are both important characteristics.


Assuntos
Implantes Absorvíveis , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Poliésteres/química , Ácido Poliglicólico/química , Força Compressiva , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...